Estimation of the junctional resistance between electrically coupled receptor cells in Necturus taste buds

نویسندگان

  • A Bigiani
  • S D Roper
چکیده

Junctional resistance between coupled receptor cells in Necturus taste buds was estimated by modeling the results from single patch pipette voltage clamp studies on lingual slices. The membrane capacitance and input resistance of coupled taste receptor cells were measured to monitor electrical coupling and the results compared with those calculated by a simple model of electrically coupled taste cells. Coupled receptor cells were modeled by two identical receptor cells connected via a junctional resistance. On average, the junctional resistance was approximately 200-300 M omega. This was consistent with the electrophysiological recordings. A junctional resistance of 200-300 M omega is close to the threshold for Lucifer yellow dye-coupling detection (approximately 500 M omega). Therefore, the true extent of coupling in taste buds might be somewhat greater than that predicted from Lucifer yellow dye coupling. Due to the high input resistance of single taste receptor cells (> 1 G omega), a junctional resistance of 200-300 M omega assures a substantial electrical communication between coupled taste cells, suggesting that the electrical activity of coupled cells might be synchronized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of electrophysiologically distinct cell subpopulations in Necturus taste buds

We used the patch clamp technique to record from taste cells in thin transverse slices of lingual epithelium from Necturus maculosus. In this preparation, the epithelial polarity and the cellular organization of the taste buds, as well as the interrelationships among cells within the taste bud, were preserved. Whole-cell recording, combined with cell identification using Lucifer yellow, allowed...

متن کامل

Membrane properties of two types of basal cells in Necturus taste buds.

Necturus taste buds contain two types of basal cells: presumptive stem cells and Merkel-like basal cells. Both types of basal cells are small round cells located at the base of the taste bud, indistinguishable from each other with light microscopy. However, with electron microscopy, autoradiography, or immunocytochemistry, these two types of basal cells can be easily distinguished. We isolated ...

متن کامل

Serotonin modulates voltage-dependent calcium current in Necturus taste cells.

Necturus taste buds contain two primary cell types: taste receptor cells and basal cells. Merkel-like basal cells are a subset of basal cells that form chemical synapses with taste receptor cells and with innervating nerve fibers. Although Merkel-like basal cells cannot interact directly with taste stimuli, recent studies have shown that Merkel-like basal cells contain serotonin (5-HT), which m...

متن کامل

Bidirectional synaptic transmission in Necturus taste buds.

Pairs of taste cells were impaled with intracellular recording microelectrodes in intact taste buds in slices of Necturus lingual epithelium. Applying short pulses of 140 mM KCl or 200 mM CaCl2 solutions to the apical pore elicited receptor potentials in taste receptor cells. Chemostimulation of receptor cells elicited postsynaptic responses in basal cells in the taste bud. Postsynaptic respons...

متن کامل

Minireview Why do taste cells generate action potentials ?

More than two decades ago, Steve Roper first reported that the large taste cells of the aquatic salamander Necturus are electrically excitable and generate action potentials in response to membrane depolarization [1]. It is now well documented that the taste cells of most, if not all, vertebrate species regularly generate action potentials not only on electrical stimulation, but also in respons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 106  شماره 

صفحات  -

تاریخ انتشار 1995